UNCLASSIFIED

AD

401 491

Reproduced
by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

63_3_2

0. 401491

TECH MEMO

TECHNICAL MEMORANDUM 52-61

THE RELIABILITY OF SERIES-PARALLEL MULTICHANNEL FUZE SYSTEMS

J. G. RAU Systems Analysis Division Fuze Department

APR 18 1963

491

NAVAL ORDNANCE LABORATORY CORONA

CORONA, CALIFORNIA

Best Available Copy

NAVAL ORDNANCE LABORATORY CORONA

W. R. KURTZ, CAPT., USN Commanding Officer

F. S. ATCHISON, Ph. D. Technical Director

CONTENTS	Page No
Abstract	Cover
Authorization	Cover
Introduction	1
Assumptions and Notation	1
Reliability of Series-Parallel Systems	
Optimum Configurations	3
Conclusions	6
Tables and Figures	7
References	28
Distribution List	29

ABSTRACT

This report is concerned with multichannel fuze systems in which the channels (component fuzes) are statistically identical, i.e., all have the same probability of early actuation and all have the same probability of dudding (defined as either non-function or late function). Explicit formulas are developed and numerical values are tabulated for the probability of system proper function, early function and dudding, for all possible series and/or parallel fuze configurations of n identical channels, where n=2, 3, 4, 5. Formulas are also developed for selecting the optimum configuration so as to maximize the average probability of system proper function when the probabilities of system early function and system dudding are assigned various weights.

AUTHORIZATION

This study was undertaken under authority of WepTask RMMO-21-030/211-1/F009-08-001, Problem Assignment 1, Influence and Contact Fuze and CCM Analysis.

V. A. BROWN

VABrown

Head, Systems Analysis Division

THE RELIABILITY OF SERIES-PARALLEL MULTICHANNEL FUZE SYSTEMS

INTRODUCTION

The objective of this report is to investigate the improvements in fuze reliability that may be expected by the use of multichannel fuze systems. Considerable interest has been shown in ordinary parallel and series systems (references (1)-(5)) but no complete analysis of the reliability of fuze systems consisting of both parallel and series channels has been given. As is easily seen, the complexity of such an analysis increases as the number of channels (component fuzes) increases; consequently, this report is concerned primarily with systems which contain at most five component fuzes. Other reports by the same author, which consider the more general situation, are in process of being published (references (6) and (7)).

ASSUMPTIONS AND NOTATION

It is assumed in this report that the reader is familiar with the basic concepts of probability theory and the fundamentals of multichannel fuze systems. The nomenclature is basically that of reference (5). The term "fuze" refers to the target detecting device and the term "channel" refers to any of the component fuzes which individually respond to the influence of the target and jointly determine the instant of detonation. Consider for example a fuze system composed of two parallel subsystems each consisting of two component fuzes in series. Electrically there are only two channels. In a more general sense, however, there are four physical channels through which the presence of the target is detected. The term channel is used in this report in the latter sense, to refer to any of the component target detecting devices regardless of their role in the electrical circuit.

By "function" (or "actuation") of a single channel is meant the occurrence of an output signal from the channel which the fuze system combines with other channel output signals to determine whether to detonate the warhead or not, i.e., whether the system as a whole should function or not. In the systems under consideration, system function is assumed to occur only as a result of the previous function of certain individual channels or combinations of these. A channel is assumed to be capable of at most a single function which, if it occurs, is recorded in the system memory. The analysis considers only systems with infinite memory times.

With a single fuze channel we associate a probability of early function, a probability of proper function, and a probability of dudding (defined to be either non-function or late function), and the sum of these probabilities is required to be equal to one. Similarly, we associate probabilities of the same three types with the system itself. All channels are assumed to be completely independent of each other in the sense that actuation, or failure to actuate, of any channel does not affect the operation of any other channel in the system. The assumption of independence in this sense is perhaps not entirely practical since it would imply independent antennas, detonators, etc., but the complexity of the problem compels us to make this assumption.

In order to refer quickly to different multichannel fuze systems we must introduce some type of convenient notation to describe the system under consideration. If X and Y are two fuze systems, then by XpY we mean that the two systems are arranged in parallel, and by XsY we mean that the two systems are arranged in series. However, if X and Y each consist of one fuze channel, then XpY becomes lpl, which denotes two fuze channels in parallel, and XsY becomes lsl, which denotes two fuze channels in series. Thus lpl corresponds to the configuration ______ and lsl corresponds

to the configuration -0-0-. In Table 1 the reader will find a complete list of fuze configurations in both diagram and notational form for the cases $n=3,\ 4,\ 5$, where n is the number of channels in the particular fuze system.

Parallel systems are characterized by the property that a prescribed minimum number of channels must actuate in order to have system actuation or function. If the system consists of n channels of which at least k channels must actuate in order for the system to actuate, the system is called a (k, n) system. In order to include this minimum requirement for actuation of parallel systems we must modify the notation slightly. We make the convention that whenever the system consists of channels or subsystems in parallel, with a minimum requirement of at least k channels or subsystems actuating, we write "-k" after the indicated notation, i.e., lplplpl-3 denotes four parallel channels of which at least three are required to function in order to have system function. A further example is given by (1s1)pl-1 which corresponds to the diagram ________ where at least one of the two

subsystems -0—0— and -0— is required to function in order to have the entire system function. Whenever k=1 is the only possibility for a given system, the inclusion of k in the notation for the system will be omitted. For example, (1s1)p(1s1)-1 is a valid system, but (1s1)p(1s1)-2 is effectively the same system as 1s1s1s1 and is therefore redundant; hence, for convenience, we write (1s1)p(1s1) instead of (1s1)p(1s1)-1. Furthermore, in all systems of five fuzes we assume k=1 unless otherwise specified.

RELIABILITY OF SERIES-PARALLEL SYSTEMS

We make the following conventions in terminology:

- P = probability of proper function of the system.
- E = probability of early function of the system.
- D = probability of dudding of the system.
- p = probability of proper function of a single channel.
- e = probability of early function of a single channel.
- d = probability of dudding of a single channel.

For the remainder of this report we assume that the individual channels in any given system are identical in the probability sense, i.e., all p's are equal, all e's are equal and all d's are equal. For a system with n such channels arranged in series we have

$$P = \sum_{j=0}^{n-1} {n \choose j} p^{n-j} e^{j} = (1-d)^{n} - e^{n}$$
 (1)

$$E = e^{n}$$
 (2)

$$D = 1 - (1 - d)^{n} (3)$$

For a (k, n) system with identical channels we have

$$P = 1 - \sum_{j=k}^{n} {n \choose j} e^{j} (1-e)^{n-j} - \sum_{j=n-k+1}^{n} {n \choose j} d^{j} (1-d)^{n-j}$$
 (4)

$$E = \sum_{j=k}^{n} {n \choose j} e^{j} (1 - e)^{n-j}$$
(5)

$$D = \sum_{j=n-k+1}^{n} {n \choose j} d^{j} (1-d)^{n-j}$$
 (6)

In Tables 2 to 5 these probability formulas are given explicitly for every possible series and/or parallel fuze configuration of n identical channels, for the cases n = 2, 3, 4, 5. In Tables 6 to 17 will be found numerical values of P, E, and D for given values of e and d, for identical-channel fuzes. No tables are given in this report for systems involving non-identical channels; however tables have been developed through the use of an IBM 7070 computer. for configurations involving two non-identical channels. The reliability of dissimilar-channel fuzes may be calculated by recursion formulas given in reference (6).

OPTIMUM CONFIGURATIONS

In comparing various multichannel fuze systems it is sometimes desirable to select a system in which the probability of early function is of prime importance and the probability of dudding of the system is secondary, or vice-versa. Thus, a logical method of selection would be to assign weighting factors to each of these probabilities and to determine a weighted probability of proper function for given values of E and D (or for given values of e and d if the channels are identical). In this manner we are able to make a reasonable comparison between multichannel fuze systems and, consequently, are able to select a fuze system that is optimum with respect to these weighted probabilities.

Considering now only multichannel fuze systems in which the channels are identical in the probability sense, i.e., having the same e's and d's, let us define the following quantities:

 $\mathbf{W}_{\mathbf{E}}$ = weighting for the probability of early function, and

 W_D = weighting for the probability of dudding, where

$$W_{E} + W_{D} = 2. (7)$$

Thus, for the weighted probability $P_{\overline{W}}$ of system proper function we define

$$P_{W} = 1 - W_{E} \cdot E - W_{D} \cdot D. \tag{8}$$

From equations (7) and (8) we also obtain

$$P_W = 1 - W_E \cdot E - (2 - W_E)D = 1 - W_E (E - D) - 2D$$
 and $P_W = 1 - (2 - W_D)E - W_D \cdot D = 1 - W_D(D - E) - 2E$.

If we weight E and D equally, i.e., if $W_E = W_D = 1$, then we obtain $P_W = 1$ -E -D, which we recognize as the probability of proper function in general.

The expressions given above for P_W refer to a particular pair of values of e and d. If it is desirable to compare multichannel fuze systems for not only one (e, d) pair but for all possible (e, d) pairs as e and d range through a given finite set of values, then we define P_W , the average system proper function probability over the intervals $0 \le e \le a \le 1$ and $0 \le d \le b \le 1$, by the equation

$$\tilde{P}_{W} = \frac{0 \leq e \leq a}{0 \leq d \leq b} = N - \frac{0 \leq e \leq a}{0 \leq d \leq b}$$

where we sum over a given finite number N of (e, d) pairs for which $0 \le e \le a$ and $0 \le d \le b$.

In Tables 18 to 22, numerical values of \bar{P}_W are given for multichannel fuze systems of n channels for the cases n=2, 3, 4, 5 over the five (e, d) intervals:

The probabilities e and d are incremented in steps of 0.05. The weighting patterns are defined by setting $W_E = 1.5$, 1.33, 1.0, 0.67 and 0.5 in equation (7). The results are discussed in the conclusions of this report.

In reference (5) it was shown that for a fuze consisting of n channels in parallel, of which at least k channels must function in order to have fuze function, the maximum reliability, i.e., probability of fuze proper function, is obtained when we select k according to the condition

$$k = \begin{cases} \frac{n+1}{2} & \text{for n odd} \\ \frac{n}{2} & \text{or } \frac{n}{2} + 1 & \text{for n even.} \end{cases}$$

From equations (5) and (6) we have

$$E(x) = \sum_{j=k}^{n} {n \choose j} x^{j} (1-x)^{n-j}$$
 (9)

and

$$D(x) = \sum_{j=n-k+1}^{n} {n \choose j} x^{j} (1-x)^{n-j}.$$
 (10)

Hence, when n is odd and we select k such that $k=\frac{n+1}{2}$, we observe that E(x)=D(x), where, in particular, E(e)=E and D(d)=D. Furthermore, for n odd and $k=\frac{n+1}{2}$, \bar{P}_W is independent of W_E and W_D when e and d range over the same intervals. Finally, suppose n is even. If $k=\frac{n}{2}$, let P_n , E_n , D_n be the probabilities associated with the system for which $k=\frac{n}{2}$; if $k=\frac{n}{2}+1$, let P_n .

if $k = \frac{n}{2} + 1$, let $\frac{P_n}{2} + 1$, $\frac{E_n}{2} + 1$, $\frac{D_n}{2} + 1$ be the probabilities associated with the system for which $k = \frac{n}{2} + 1$. From equations (5) and (6) we have

$$E_{\frac{n}{2}} = \sum_{j=\frac{n}{2}}^{n} {n \choose j} e^{j} (1-e)^{n-j}$$
(11)

 $D_{\frac{n}{2}} = \sum_{j = \frac{n}{2} + 1} {n \choose j} d^{j} (1 - d)^{n - j}$ (12)

$$E_{\frac{n}{2}+1} = \sum_{j=\frac{n}{2}+1}^{n} {n \choose j} e^{j} (1-e)^{n-j}$$
 (13)

$$D_{\frac{n}{2}+1} = \sum_{j=\frac{n}{2}} {n \choose j} d^{j} (1-d)^{n-j}$$
 (14)

Hence, from equations (11) to (14) we see that

$$E_{\underline{n}} = \begin{pmatrix} n \\ \frac{n}{2} \end{pmatrix} e^{n/2} (1 - e)^{n/2} + E_{\underline{n}} + 1$$
 (15)

$$D_{\underline{n}} = D_{\underline{n}} + 1 - {n \choose \underline{n}} d^{n/2} (1 - d)^{n/2}; \qquad (16)$$

consequently,

when
$$W_E > W_D$$
, $\frac{\bar{P}}{2} + 1 > \frac{\bar{P}}{2}$; when $W_E = W_D$, $\frac{\bar{P}}{2} + 1 = \frac{\bar{P}}{2}$; and when $W_E < W_D$, $\frac{\bar{P}}{2} + 1 = \frac{\bar{P}}{2}$,

provided e and d range over the same range of values. Therefore, when system early function is more important (in the sense of a heavier weighting) than dudding, the choice $k=\frac{n}{2}+1$ provides a higher average system proper function probability; similarly, when system dudding is more important than system early function, the choice $k=\frac{n}{2}$ provides a higher average system proper function probability.

CONCLUSIONS

It is obvious from the formulas associated with such systems, as it is intuitively, that series systems minimize early function and parallel systems minimize dudding; however, the results of Tables 18 to 22 show that no parallel and series combination system does both. Furthermore, we have shown that for systems consisting of two, three, four, and five channels, certain ordinary parallel systems are more desirable with respect to reliability than any parallel and series combination of the same number of component fuzes. Using the criteria of the preceding section, we have listed in Table 22 the optimum n-channel system(s) for the cases n=2, 3, 4, 5. From this table we may conclude that a system consisting of five identical channels in parallel, of which at least three must function in order to have entire system function, is optimum with respect to reliability.

It has been observed in reference (5) that in a parallel system of n identical channels in which the probability of system early function equals the probability of system dudding, the maximum reliability increases as n increases from even to odd but remains constant as n increases from odd to even. As a consequence of our earlier discussion with regard to weightings, the preceding statement is also independent of the weightings for the early function and dudding probabilities. Furthermore, if E, the probability of system early function and D, the probability of system dudding, are weighted equally, then, as a consequence of the above results from reference (5), the average system proper function probability increases as n increases from even to odd but remains constant as n increases from odd to even, provided e (the probability of individual fuze channel early function) and d (the probability of individual channel dudding) range over the same finite set of values. This is not necessarily true, however, when E and D are assigned unequal weights, as may be seen from Table 23 and Fig. 1 to 5, which present the average probability of proper function, \bar{P}_{W} , for a(k, n) system of identical parallel channels, for values of n from 3 to 9 and selected values of k.

Table 1. Notation and Schematic Diagrams

7

Table 2

1s1 1p1-1	Probability (P) of Proper Function P=(1-d) ² -e ² P=(1-e) ² -d ²	Probability (E) of Early Function $E=e^{2}$ $E=1-(1-e)^{2}$	Probability (D) of Dudding D=1-(1-d) ² D=d ²
	Table 3		
	n = 3		
1s1s1 1p1p1-1 1p1p1-2 (1p1)s1 (1s1)p1	$P=(1-d)^{3}-e^{3}$ $P=(1-e)^{3}-d^{3}$ $P=1-3e^{2}+2e^{3}-3d^{2}+2d^{3}$ $P=1-2e^{2}+e^{3}-d-d^{2}+d^{3}$ $P=1-e-e^{2}+e^{3}-d^{2}+d^{3}$	$E=e^{3}$ $E=1-(1-e)^{3}$ $E=3e^{2}-2e^{3}$ $E=2e^{2}-e^{3}$ $E=e+e^{2}-e^{3}$	$D=1-(1-d)^{3}$ $D=3d^{3}$ $D=3d^{2}-2d^{3}$ $D=d+d^{2}-d^{3}$ $D=2d^{2}-d^{3}$
	Table 4		
	n = 4		
lslslsl lplplpl-1 lplplpl-2 lplplpl-3 (lpl)s(lpl) (lsl)p(lsl) (lslsl)pl (lplpl)sl-1 (lplpl)sl-2 (lpl)slsl (lsl)plpl-1 (lsl)plpl-2 lp [ls(lpl)] ls [lp(lsl)]	P=(1-d) ⁴ -e ⁴ P=(1-e) ⁴ -d ⁴ P=1-6e ² +8e ³ -3e ⁴ -4d ³ +3d ⁴ P=1-4e ³ +3e ⁴ -3d ⁴ +8d ³ -6d ² P=1-4e ² +4e ³ -e ⁴ -2d ² +d ⁴ P=1-2e ² +e ⁴ -4d ² +4d ³ -d ⁴ P=1-e-e ³ +e ⁴ -3d ² +3d ³ -d ⁴ P=1-3e ³ +2e ⁴ -d-3d ² +5d ³ -2d ⁴ P=1-2e ³ +e ⁴ -2d+2d ³ -d ⁴ P=1-2e+2e ³ -e ⁴ -2d ³ +d ⁴ P=1-e ² -2e ³ +2e ⁴ -5d ² +6d ³ -2d ⁴ P=1-e ² -2e ³ +2e ⁴ -d-2d ² +3d ³ -d ⁴ P=1-e ² -e ³ +e ⁴ -d-2d ² +3d ³ -d ⁴	E=e ⁴ E=1-(1-e) ⁴ E=6e ² +3e ⁴ -8e ³ E=4e ³ -3e ⁴ E=4e ² -4e ³ +e ⁴ E=2e ² -e ⁴ E=e+e ³ -e ⁴ E=3e ³ -2e ⁴ E=2e-2e ³ +e ⁴ E=e ² +2e ³ -2e ⁴ E=e+2e ² -3e ³ +e ⁴ E=e ² +2e ³ -2e ⁴	D=1-(1-d) ⁴ D=d ⁴ D=d ⁴ D=4d ³ -3d ⁴ D=6d ² -8d ³ +3d ⁴ D=2d ² -d ⁴ D=4d ² -4d ³ +d ⁴ D=3d ² -3d ³ +d ⁴ D=d+3d ² -5d ³ +2d ⁴ D=2d-2d ³ +d ⁴ D=2d ³ -d ⁴ D=5d ² -6d ³ +2d ⁴ D=d ² +d ³ -d ⁴ D=d ² +d ³ -d ⁴ D=d+2d ² -3d ³ +d ⁴

Table 5 n = 5	Probability (P) of Proper Function	Probability (E) of Early Function	Probability (D)
sisisisi	P=(1-d) ⁵ -e ⁵	E=e 5	D=1-(1-d) ⁵
plplplp1-1	$P=(1-e)^{5-d}$	$E=1-(1-e)^5$	D=d ⁵
plplplp1-2	$P=1-10e^{2}+20e^{3}-15e^{4}+4e^{5}-5d^{4}+4d^{5}$	$E=10e^{2}-20e^{3}+15e^{4}-4e^{5}$	D=5d ⁴ -4d ⁵
plplplp1-3	$P=1-10e^{3}+15e^{4}-6e^{5}-10d^{3}+15d^{4}-6d^{5}$	E=10e ³ -15e ⁴ +6e ⁵	$D=10d^{3}-15d^{4}+6d^{5}$
	$P=1-5e^{4}+4e^{5}-10d^{2}+20d^{3}-15d^{4}+4d^{5}$	E=5e ⁴ -4e ⁵	$D=10d^2-20d^3+15d^4-4d^5$
	$P=1-4e^2+6e^3-4e^4+e^5-d-d^4+d^5$	E=4e ² -6e ³ +4e ⁴ -e ⁵	D=d+d ⁴ -d ⁵
	$P=1-e-e^4+e^5-4d^2+6d^3-4d^4+d^5$	E=e+e 4 5	$D=4d^2-6d^3+4d^4-d^5$
(10	$P=1-6e^2+9e^3-5e^4+e^5-d^2-d^3+d^5$	E=6e ² -9e ³ +5e ⁴ -e ⁵	$D=d^2-d^3-d^5$
_	$P=1-e^2-e^3+e^5-6d^2+9d^3-5d^4+d^5$	E=e ² +e ³ -e ⁵	$D=6d^{2}-9d^{3}+5d^{4}-d^{5}$
	$P=1-2e^{2}-e^{3}+3e^{4}-e^{5}-3d^{2}+d^{3}+2d^{4}-d^{5}$	$E=2e^{2}+e^{3}-3e^{4}+e^{5}$	$D=3d^2-d^3-2d^4-d^5$
$(1p1)s\overline{1}$ $p(1s1)$	P=1-3e ² +e ³ +2e ⁴ -e ⁵ -2d ² -d ³ +3d ⁴ -d ⁵		$D=2d^2+d^3-3d^4+d^5$
	$P=1-4e^{3}+4e^{4}-e^{5}-d-2d^{2}+2d^{3}+d^{4}-d^{5}$		$D=d+2d^2-2d^3-d^4+d^5$
	$P=1-e-2e^2+2e^3+e^4-e^5-4d^3+4d^4-d^5$		D=4d ³ -4d ⁴ +d ⁵
	$P=1-3e+2e^{2}+2e^{3}-3e^{4}+e^{5}-2d^{4}+d^{5}$		$D=2d^{4}-d^{5}$
	$P=1-2e^{4}+e^{5}-3d+2d^{2}+2d^{3}-3d^{4}+d^{5}$		$D=3d-2d^2-2d^3+3d^4-d^5$
	$P=1-3e^{3}+3e^{4}-e^{5}-2d+d^{2}-d^{3}+2d^{4}-d^{5}$		$D=2d-d^{2}+d^{3}-2d^{4}+d^{5}$
lsls1)plpl	$P=1-2e+e^2-e^3+2e^4-e^5-3d^3+3d^4-d^5$	$E=2e-e^2+e^3-2e^4+e^5$	D=3d ³ -3d ⁴ -d ⁵
(1s1)p1s1s1	$P=1-e^{3}e^{4}+e^{5}-2d-d^{2}\cdot 5d^{3}-4d^{4}+d^{5}$	$E = e^{3 + e^{-6}}$	$D=2d+d^2-5d^3+4d^4-d^5$
(lpl)slplpl	P=1-2e-e ² +5e ³ -4e ⁴ -e ⁵ -d ³ -d ⁴ +d ⁵	E=2e+e ² -5e ³ +4e ⁴ -e ⁵	$D=d^{3}-d^{4}-d^{5}$
[lsl)plpl]sl	$P=1-2e^2+2e^4-e^5-1-2d^3+3d^4-d^5$	$E=2e^{2}-2e^{4}+e^{5}$	$D=d+2d^{3}-3d^{4}-d^{5}$
(lpl)slslpl	$P=1-e-2e^{3}+3e^{4}-e^{-3}-2d^{2}+2d^{4}-d^{5}$	$E=e+2e^{3}-3e^{4}+e^{5}$	$D=2d^2-2d^4-d^5$
[lplpl)s]pl	P=1-e-3e ² +6e ³ -4e ⁴ e ⁵ -d ² -d ⁴ -d ⁵	$E=e+3e^{2}-6e^{3}+4e^{-6}$	$D=d^{2}+d^{4}-d^{5}$
$(1s1s1)p\overline{1}s1$	$P=1-e^2-e^4+e^5-d-3d^2+6d^3-4d^4+d^5$	$E = e^{2} + e^{-6}$	$D=d+3d^{2}-6d^{3}+4d^{4}-d^{5}$
(1p1)s(1p1)	$P=1-e-4e^2+8e^3-5e^4+e^5-2d^3+d^5$	E=e-4e ² -8e ³ +5e ⁴ -e ⁵	D=2d ³ -d ⁵
(1s1)p(1s1) s1	P=1-2e ³ +e ⁵ -d-4d ² +8d ³ -5d ⁴ +d ⁵	$E=2e^3-e^5$	$D=d-4d^2-8d^3-5d^4-d^5$
[s[(1s1)p]]	$P=1-e-e^2+2e^4-e^5+d^2-2d^3+3d^4-d^5$	$E = e - e^2 - 2e^4 + e^5$	$D=d^{2}+2d^{3}-3d^{4}-d^{5}$
1p[(1p1)s1]s1	$P=1+e^{2}-2e^{3}+3e^{4}-e^{5}-d-d^{2}+2d^{4}-d^{5}$	$E=e^{2}+2e^{3}-3e^{4}+e^{5}$	$D=d+d^2-2d^4+d^5$
1			

Table 6. Probability of Proper Function n = 2

<u>e</u>	d	lpl-l	lsl
0	0	1.000	1.000
	.05	.997	.902
	.1	.990	.810
	.15	.977	.722
	. 2	.960	.640
	.25	.937	. 562
	. 3	.910	.490
.05	0	.902	.997
	.05	.899	. 899
	. 1	.892	.807
	.15	.879	. 719
	. 2	.862	.637
	.25	.839	. 559
	.3	.812	.487
. 1	0	.810	.990
	.05	.807	.892
	.1	.800	.800
	.15	.787	.712
	. 2	.770	.630
	.25	.747	. 552
	. 3	.720	.480
.15	0	.722	.977
	.05	.719	.879
	.1	.712	.787
	.15	. 699	. 699
	. 2	.682	.617
	.25	.659	.539
_	.3	.632	.467
. 2	0	.640	.960
	.05	.637	.862
	.1	.630	.770
	.15	.617	.682
	. 2	.600	.600
	.25	.577	.522
25	.3	.550	.450
. 25	0	. 562	.937
	.05	.559	.839
	.1 .15	. 552	.747
	.2	.539 .522	.659
	.25	.499	.577
	.3	.472	.499 .427
. 3	.3	.490	.910
• •	.05	.487	.812
	.1	.480	,720
	.15	.467	,632
	. 2	.450	, 550
	. 25	.427	. 472
	.3	.400	.400
			, ,

Table 7. Probability of Early Function n = 2

e	1pl-1	lsl
0	.000	.000
.05	.098	.003
.1	.190	.010
.15	.278	.023
. 2	.360	.040
. 25	.438	.063
. 3	.510	.090

Table 8. Probability of Dudding

d	lp1-1	1s1
0	.000	.000
.05	.003	.098
.1	.010	.190
.15	.023	.278
. 2	.040	. 360
.25	.063	.438
. 3	.090	.510

Table 9. Probability of Proper Function

e	d	lslsl	(1plpl)-1	(lplp1)-2	(lpl)sl	(lsl)pl
0	0	1.000	1.000	1.000	1.000	1.000
-	.05	.857	1.000	.993	.948	.995
	.1	. 729	.999	.972	.891	.981
	.15	.614	.997	.939	.831	.958
	. 2	.512	.992	.896	.768	.928
	. 25	.422	.984	. 844	. 703	.891
	.3	. 343	.973	.784	.637	.847
.05	0	1.000	.857	.993	.995	.948
	.05	.857	.857	.986	.943	.943
	.1	. 729	.856	.965	.886	.929
	.15	.614	.854	.932	.826	.906
	. 2	.512	.849	.889	.763	.876
	. 25	.422	.842	.837	.698	.838
	. 3	. 343	.830	.777	.632	. 795
. 1	0	.999	. 729	.972	.981	.891
• =	.05	.856	.729	.965	.929	.886
	.1	. 728	.728	.944	.872	.872
	.15	.613	.726	.911	.812	.849
	. 2	.511	.721	.868	. 749	.819
	.25	.421	.713	.816	.684	. 782
	.3	. 342	. 702	. 756	.618	.738
.15	Ō	.997	.614	.939	.958	.831
	. 05	. 854	.614	.932	.906	.826
	. 1	. 726	.613	.911	.849	.812
	.15	.611	.611	. 879	. 789	. 789
	. 2	. 509	.606	.835	.726	. 759
	. 25	.419	. 599	. 783	.662	.722
	. 3	. 340	.587	.723	. 595	.678
. 2	0	.992	.512	. 896	.928	. 768
	.05	.849	.512	. 889	.876	.763
	. 1	.721	.511	. 868	.819	. 749
	.15	.606	. 509	.835	.759	.726
	. 2	. 504	. 504	. 792	.696	.696
	. 25	.414	.496	. 740	.631	.659
	. 3	. 335	.485	.680	.565	.615
.25	0	.984	.422	. 844	.891	. 703
	.05	.842	.422	.837	.838	.698
	. 1	.713	.421	.816	.782	.684
	.15	. 599	.419	. 783	.722	.662
	. 2	.496	.414	. 740	.659	.631
	. 25	.406	.406	. 688	. 594	. 594
	. 3	.327	. 395	.628	. 528	.550
. 3	0	.973	. 343	. 784	.847	.637
	.05	.830	. 343	.777	. 795	.632
	. 1	. 702	. 342	. 756	.738	.618
	.15	. 587	. 340	.723	.678	. 595
	. 2	.485	. 335	.680	.615	. 565
	. 25	. 395	. 327	.628	.550	.528
	. 3	.316	.316	. 568	.484	.484

Table 10. Probability of Early Function

e	lslsl	(lplpl)-l	(lplpl)-2	(lpl)sl	(lsl)pl
0	.000	.000	.000	.000	.000
.05	.000	.143	.007	.005	.052
. 1	.001	.271	.028	.019	.109
.15	.003	.386	.061	.042	.169
. 2	.008	.488	.104	.072	. 232
.25	.016	.578	.156	.109	. 297
.3	.027	.657	.216	.153	.363

Table 11. Probability of Dudding

<u>d</u>	lslsl	(lplpl)-l	(1p1p1)-2	(lpl)sl	(lsl)pl
0	.000	.000	.000	.000	.000
.05	.143	.000	.007	.052	.005
. 1	.271	.001	.028	.109	.019
.15	. 386	.003	.061	.169	.042
. 2	.488	.008	.104	.232	.072
. 25	.578	.016	.156	. 297	.109
.3	.657	.027	.216	.363	.153

Table 12. Probability of Proper Function n = 4

1.000	.945	.883	.815	. 742	899.	. 593	766.	.943	.880	.812	. 740	.665	. 590	686.	786.	.872	. 804	. 731	.657	. 582	.975	.920	.858	. 789	./1/	643	45.6	568	.836	. 768	969.	.622	.547	.926	1,8,1	606.	944	765	. 519	.891	.836	.774	. 706	.634	0
1.000	766.	686.	.975	.954	.926	.891	.945	.942	.934	.920	668.	.871	.836	.883	.880	.872	.857	.836	808.	774	.815	.813	.805	067.	69/	141.	743	740	. 731	.717	969.	. 668	.633	.668	999	/60.	622	594	. 559	. 593	. 590	. 582	. 567	. 546	•
1.000	886.	.956	.907	. 845	.773	969.	766.	986.	.953	706.	.842	177.	. 693	886.	976.	776.	. 895	.833	. 762	789.	.972	096.	.928	678.	/18.	. /45	296.	. 935	.903	.854	. 792	. 721	.643	516	206.	0/0.	759	. 688	.610	.872	.860	.828	. 779	.717	
1.000	1.000	866.	766.	986.	.973	.954	906.	006.	868.	768.	.886	.873	.854	. 802	.802	800	962.	.787	. 775	.756	90′.	. 706	. 704	98.	760.	6/9.	.614	.614	.613	909.	009.	. 587	. 569	.527	770	525.	513	200	.481	977.	977	777	077	.431	
1.000	906	. 802	. 706	.614	.527	977.	1.000	906	.802	. 706	.614	.527	977.	866.	868.	.800	. 764	.613	. 525	777	766.	.894	. 796	86	8 3	175.	986	.886	. 788	. 692	909.	.513	.431	5/6.	2/0.	677	283	200	617.	.954	.854	. 756	. 660	. 269	
1.000	.943	.875	. 798	.717	.633	£.	1.000	.943	.874	867.	. 716	. 632	. 548	766.	076	.872	962.	717	.630	. 546	.991	.934	.866	68/.	80/·	• 79.5 • 79.5	676	.922	.854	.778	969.	.612	.528	196.	3 6	950.	678	. 594	. 510	.935	.878	.810	.7%	.652	
1.000	.950	668.	.847	764.	. 738	.681	.993	.943	.892	.840	. 786	. 731	7.9.	.973	.923	.872	.820	.767	. 711	. 654	.942	. 89.2	.841	68/.	95/.	. 680	.902	.852	.802	.750	969.	13.	. 584	555	596.	507	679	. 594	. 537	.803	.753	. 702	.650	. 59.7	
1.000	.993	.973	.942	.902	.855	. 803	956.	.943	.923	.892	.852	.805	. 753	668.	.892	.872	.841	.801	. 755	. 702	.847	.840	.820	68/.	X :	. 703	794	786	. 766	. 736	969.	679	765.	86/.		11/.	3	. 594	¥.	.681	7.9.	454.	.623	. 583	
1.000	066.	796.	.923	.870	.809	. 740	. 995	986.	.959	916.	.865	. 804	. 735	086.	.971	776.	.903	.850	. 789	. 720	.956	976.	916.	6/8.	979.	* o	.922	.912	.885	.845	. 792	. 730	799.	6/0	600.	. 040	749	. 688	.619	.828	.819	. 792	. 751	669.	
1.000	566.	.980	956	.922	.879	.828	066.	986	.971	976.	.912	698.	.819	.964	.959	776.	916.	. 385	. 843	. 792	.923	.918	.903	6/8,	3.5	2007	.870	.865	.850	.826	. 792	. 749	660.	£ &	5 5	767	. 730	. 688	.637	. 740	.735	07/	. 695	.662	
1.000	986.	876.	.890	.819	. 738	.652	1.000	986.	.947	.890	.819	. 738	.651	966.	.982	776.	.887	.815	. 735	848	986	76.	936	6/80	96.	97/.	.973	.959	.920	.863	. 792	. 711	579.	946		078	. 768	.688	.601	.916	.902	799.	.80	. 736	
1.000	1.000	966.	986.	.973	676.	916.	986.	986.	.982	.974	.959	.935	.902	876.	.947	776	.936	.920	.897	.864	. 890	. 890	/88.	6/8.	000	2040	.819	.819	.815	.807	. 792	. 768		. 7.30	5. v.	7.56	7117	.688	.655	.652	.651	840	070	.625	
1.000	1.000	1.000	666.	866.	966.	.992	.815	.815	.814	718.	.813	.811	908.	.656	959.	.656	.656	,655	.652	.648	. 522	. 522	. 522	176.	076.	715	410	017.	.410	604.	.408	904.	704.	316	916	316	.315	.312	. 308	. 240	. 240	740	. 240	. 238	
1.000	.815	959.	. 522	.410	.316	. 240	1.000	.815	959.	. 522	.410	.316	. 240	1.000	.815	. 656	. 522	.410	.316	. 240	666.	.814	909.	176.	5	240	866.	.813	.655	. 520	708	.315	. 238	2,490		518	904	.312	. 236	.992	908.	849	. 514	705	
0	.05	۲,	.15	-7	.25	ŗ.	.05 0	.05	٦.	.15	.2	.25		0 1.	.05	7.	51.	.2	. 25	•	.15 0	90.	7.		4.	9.	.2	.05	٦.	.15	.2	. 25		0 62.	<u>.</u>	: -	?	. 25	۳.	3	.05	- : :	.15	• 7	

Table 13. Probability of Early Function

7 = 11

p(1s1).	0000 003 0011 025 026 074 109
18.1	
Ip [ls(lpl)	.000 .055 .117 .1185 .258
(1s1)plpl-2	. 000 . 003 . 012 . 028 . 053 . 086
(lsl)plpl-l	.000 .100 .198 .294 .386 .473
(1pl)sls1	.000 .000 .002 .004 .014
(lplpl)sl-2	.000 .000 .003 .021 .039
(lplpl)s1-1	.000 .007 .027 .058 .098 .145
(lslsl)pl	.000 .050 .101 .153 .206 .262
(1s1)p(1s1)	.000 .005 .020 .044 .078 .121
(lq1)s(lq1)	.000 .010 .036 .077 .130 .191
lplplpl-3 (.000 .000 .004 .012 .027 .051
1plplp1-2	.000 .014 .052 .110 .181 .262
1-lqlqlq1	.000 .185 .344 .478 .590 .684
Islslsl	
v	
اب	0.05 1.15 1.25 1.35 1.35

Table 14. Probability of Dudding

7 = u

16 10(161)	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2)))	<i>u u c</i>	3	1		C (4)		25.0	201	232	100.		
ln[le(ln])	******	000.	,00	50.		110.	200	0.20	7.6	2	,,,,	,	2	. 103
(101)11112	7 7/17/194	000.		710.	2	1	600	. 69.	44.		100	177.	200	100.
121212121	1-1444/141	00,	000	3	,,,,	200.	900	900.		*10·		.70.	7/0	0
, [-1]-(1-1)	1019/101	000		37.	000	. 198	, 00	767.	, ,	. 35.		7/7.	ì	724
6 1-11-1	7-78/1d1d1	000		/50.		.125	0	707	000	. 283		.36/		-1
	1-18/1didi	000		.050		101.		.153		. 206		. 262		~
:	Idristsi	000		.007		.027		.058		860		.145	. !	707
;	(181)Q(181)	000		010	1 1	.036		.077		130		. 191		260
;	(1p1)s(1q1)	٤		.005		020		770		0.78		. 121		. 7.2
•	lplplpl-3	8	8	.014		052	100	-1		200		262		9,0
	lplplpl-2	Ş	3	000		Š		212	•	027		051		90
	isisisi lpipipi-i	8	3	6	8	9	3	٤	3	000		Š		000
	isisisi	000	3	28.5		3/./	•	7.79) ;	200		, B. 9.	. 00	0,1
	Ð	ć	>	Ç	5	-	•	3.0	:	c	:	5,0		•

Table 15. Probability of Proper Function

e	d	lsisisi	1p1p1p1p1-1	1plplplp1-2	1p1p1p1p1-3	1plplplp1-4	ls(lplplpl)	lp(lslslsl)	(1p1p1)s(1p1)	(1s1s1)p(1s1)	[(181)p] s(1p1)	[(1p1)s1]p(1s1)	1s(1p1)s(1p1)	1p(1s1)p(1s1)	(1s1)pipipi	(1pl)slelsl	 1s(lplpl)sl	lp(lslsl)pl	
0	0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1
	.05 .1	.774 .590	1.000	1.000	.999 .991	.977 .919	.950 .900	.991 .966	.997 .989	.986 .949	.993 .971	.995 .979	.945 .882	1.000	1.000	.855 .722	.902 .809	1.000 .997	
	.15	.444	1.000	.998	.973	.835	.850	.928	.974	.893	.937	.953	.812	.988	.999	,600	.720	.991	
	. 2	.328	1.000	.993	.942	.737	. 799	.882	.952	.824	.891	.916	.737	.974	.997	.492	.635	.980	
	. 25	.237	.999	.984	.896	.633	.747	.829	.923	.747	.835	.870	.659	.952	.993	. 396	.554	.964	
.05	.3	.168 1.000	.998 .774	.969 .977	.837 .999	.528 1.000	.694 .991	.772 .950	.885 .986	.665 .997	.771 .995	.815 .993	.580 1.000	.922	.986 .855	.312 1.000	.477 1.000	.941 .902	1
	.05	.774	.774	.977	.998	.977	.941	.941	.983	.983	.988	.988	.945	.945	.855	.855	.902	.902	•
	.1	. 590	.774	.977	.990	.919	. 891	.916	.975	.946	.966	.972	.882	.942	.855	.722	.809	.900	
	.15	.444 .328	.774 .773	.975 .971	.972 .941	.835 .737	.840 .789	.878 .832	.960 .938	.890 .822	.932 .886	.946 .909	.812 .737	.934	.854 .852	.600 .492	.720 .635	.894 .883	
	.25	.237	.773	.962	.895	.633	.738	.779	.909	.744	.830	.863	.659	.897	.848	.395	.553	.866	
	.3	.168	.771	.947	.836	.528	.685	.722	.872	.662	.766	.808	.579	.867	.841	.312	.476	.843	
.1	0	1.000	. 590	.919	.991	1.000	.966	.900	.949	.989	.979	.971	.996	.882	.722	1.000	.997	. 809	
	.05 .1	.774 .590	.590 .590	.919 .918	.990 .983	.977 .918	.916 .866	.891 .866	.946 .938	.975 .938	.972 .950	.966 .950	.942 .878	.882 .878	.722 .722	.855 .722	.900 .806	.809 .806	
	.15	.444	.590	.916	.965	.835	.815	.828	.923	.882	.916	.924	.809	.871	.721	.600	.717	.801	
	. 2	. 328	. 590	.912	.934	.737	. 764	. 782	.901	.813	.870	.888	.734	.856	.719	.491	.632	. 790	
	. 25	. 237	. 590	.903	.888 .828	.632 .528	.713 .660	.729	.871 .834	.736	.814	.841	.656 .576	.834	.715	.395	.551	.773	
.15	.3	.168	.588	.888 .835	.973	.998	.928	.672 .850	.893	.654 .974	.750 .953	.786 .937	.988	.804 .812	. 708 . 600	.312	.474 .991	.750 .720	
	.05	.774	.444	.835	.972	.975	.878	.840	.890	.960	.946	.932	.934	.812	.600	.854	.894	.720	
	.1	. 590	.444	.835	.965	.916	.828	.815	.882	.923	.924	.916	.871	. 809	.600	.721	.801	.717	
	.15	.444	.444 .443	.833 .828	.947 .915	.833 .735	.778 .727	.778 .731	.867 .845	.867 .799	.890 .844	.890	.801 .726	.801	. 599	. 599	.711	.711	
	. 25	. 237	.443	.820	.870	.631	.675	.679	.816	.799	.788	.853 .807	.648	. 786 . 764	. 597 . 593	.491 .395	.626 .545	.701 .684	
	.3	.168	.441	.804	.810	.526	.623	.622	.778	.639	.724	.752	.568	.734	.587	.311	.468	.661	
. 2	0	1.000	.328	.737	.942	.993	.882	. 799	.824	.952	.916	.891	.974	. 737	.492	.997	.980	.635	
	.05	.773	.328 .328	.737 .737	.941 .934	.971 .912	.832 .782	.789 .764	.822. .813	.938 .901	.909 .888	.886 .870	.919 .856	.737 .734	.492 .491	.852	.883	.635	
	.15	.443	.328	.735	.915	.828	.731	.727	.799	.845	.853	.844	.786	.726	.491	.719 .597	.790 .701	.632 .626	
	. 2	.327	. 327	.731	.884	.731	.681	.681	.777	.777	.807	.807	.711	.711	. 489	.489	.615	.615	
	. 25	. 237	.327	.722	.839	.626	.629	.628	.747	.699	.751	.761	.633	.689	.485	.393	. 534	. 599	
. 25	.3	.168	.325 .237	.706 .633	.779 .896	.522 .984	.576 .829	.571 .747	.710 .747	.617 .923	.687 .870	.706 .835	.554 .952	. 659 . 659	.478 .396	.30 9 .993	.457	.576 .554	
	.05	.773	.237	.633	.895	.962	.779	.738	.744	.909	.863	.830	.897	.659	.395	.848	.964 .866	.553	
	.1	. 590	.237	.632	.888	.903	.729	.713	.736	.871	.841	.814	.834	.656	. 395	.715	.773	. 551	
	.15	. 443	.237	.631	.870	.820	.679	.675	.721	.816	.807	.788	.764	.648	. 39 5	. 593	.684	. 545	
	.2	.327 .236	.237	.626 .617	.839 .793	.722	.628 .576	.629 .576	.699 .670	.747 .670	.761 .705	.751 .705	.689 .611	.633	. 393	.485	. 599	.534	
	.3	.167	.235	.602	.733	.513	.523	.519	.633	.588	.641	.650	.532	.581	.382	.389 .305	.518 .441	.518 .495	
. 3	0	.998	.168	. 528	.837	.969	.772	.694	.665	.885	.815	.771	.922	. 580	.312	.986	.941	.477	
	.05	.771	.168	.528	.836	.947	.722	.685	.662	.872	.808	.766	.867	. 579	.312	. 841	.843	. 476	
	.1	.588 .441	.168	.528 .526	.828 .810	.888 .804	.672 .622	.660	.654 .639	.834 .778	.786 .752	.750	. 804 . 734	.576 .568	.312	.708 .587	.750	.474 .468	
	.2	. 325	.168	.522	.779	.706	.571	.576	.617	.710	.706	.687	.659	,554	. 309	.30/ .4 7 8	.661 .576	.457	
	. 25	. 235	.167	.513	.733	.602	.519	.523	. 588	.633	.650	.641	.581	.532	.305	.382	.495	. 441	
	.3	.166	.166	.497	.674	.497	.466	.466	. 550	.550	. 586	. 586	. 502	.502	. 298	. 298	.418	.418	

ınction

/ + d + \ e / + d + d + \	(1s1s1)p(1s1)	[(1s1)pl]s(1p1)	[(1p1)s1]p(1s1)	1s(1p1)s(1p1)	1p(1s1)p(1s1)	(1s1)plplpl	(1p1)s1s1s1	ls(lplpl)sl	lp(1sls1)pl	[(1s1)p]] sls1	[(1p1)s1]p1p1	[(1s1)p1p1]s1	[(lpl)sisi]pi	[lplpl)slpl	[(18181)pl] 81	[(1p1)8(1p1)]	[[1s1)p(1s1)]s1	{18 [(181)p]} p1	{lp[(lp1)s1]} s1
20	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000
97	.986	.993	.995	.945	1.000	1.000	.855	.902	1.000	.898	1.000	.950	.995	.997	.943	1.000	.941	.997	.948
89	.949	.971	.979	.882	.996	1.000	.722	.809	.997	. 795	.999	.898	.980	.990	.876	.998	.868	.988	.890
74 52	.893	.937	.953 .916	.812 .737	.988	.999 .997	.600 .492	.720	.991	.692	.996	.845	.956	.977	.801	.993	.785	.972	.828
23	.824 .747	.891 .835	.870	.659	.974 .952	.993	.396	.635 .554	.980 .964	.594 .501	.991 .981	.788 .729	.923 .882	.959 .935	.722 .642	.984 .970	.696 .606	.948 .917	.763 .694
85	.665	.771	.815	.580	.922	.986	.312	.477	.941	.415	.967	.668	.834	.904	.562	.948	.518	.878	.624
86	.997	.995	.993	1.000	.945	.855	1.000	1.000	.902	1.000	.898	.995	.950	.943	.997	.941	1.000	.948	.997
83	.983	.988	.988	.945	.945	.855	.855	.902	.902	.898	.898	.945	.945	.941	.941	.941	.941	.945	.945
75	.946	.966	.972	.882	.942	.855	.722	.809	.900	. 794	. 897	.893	.930	.933	.873	.939	.867	.936	.887
60	.890	.932	.946	.812	.934	.854	.600	.720	. 894	.692	.894	.840	.906	.920	. 798	,934	.784	.920	.826
38 09	.822 .744	.886 .830	.909 .863	.737 .659	.919 .897	.852 .848	.492 .395	.635 .553	.883 .866	.594 .501	.889 .880	.783 .725	.873 .832	.902 .878	.719 .639	.925 .911	.696 .606	.896 .865	.760 .692
72	.662	.766	.808	.579	.867	.841	.312	.476	.843	.415	.865	.663	.784	.848	.560	.889	.518	.825	.621
49	.989	.979	.971	.996	.882	.722	1.000	.997	. 809	.999	.795	.980	.898	.876	.990	.868	.998	.890	.988
46	.975	.972	.914	.942	.882	.722	.855	.900	.809	.897	. 794	.930	.893	.873	.933	.867	.939	.887	.936
38	.938	.950	.9:0	.878	.878	.722	.722	.806	. 806	. 794	. 794	.878	.878	.866	.866	.866	.866	.878	.878
23	.882	.916	• •	. 809	.871	.721	.600	.717	.801	.691	.791	.825	.854	.853	. 791	.861	. 783	.862	.817
01	.813	.870	38 درو	.734	.856	.719	.491	.632	. 790	. 593	.785	.769	.821	.834	.712	.852	.694	.839	.751
171 134	.736 .654	.814 .750	.841 .786	.656 .576	.834 .804	.715 .708	.395	.551	.773	.500	.776	.710	.780	.810	.632	.837	.604	.807	.683
193	.974	.953	.937	.988	.812	.600	.312	.474 .991	.750 .720	.414 .996	.762 .692	.648 .956	.732 .845	.780 .801	.552 .977	.816 .785	.516 .993	.768 .828	.612 .972
190	960	.946	.932	.934	.812	.600	.854	.894	.720	.894	.692	.906	.840	.798	.920	.784	.934	.826	.920
182	.923	.924	.916	.871	. 809	.600	.721	.801	.717	. 791	.691	.854	.825	.791	.853	.783	.861	.817	.862
367	.867	.890	.890	.801	.801	. 599	. 599	.711	.711	.689	.689	.801	.801	.778	.778	.778	.778	.801	.801
345	. 799	.844	.853	.726	. 786	.597	.491	.626	. 701	.590	.683	.744	,768	.760	.699	.769	.690	.777	.735
316	.721	.788	.807	.648	.764	. 593	. 395	. 545	. 684	.497	.674	.685	.727	.735	.619	.754	.600	.745	.667
178 324	.639 .952	.724 .916	.752 .891	.568 .974	.734 .737	.587 .492	.311 .997	.468 .980	.661 .635	.411 .991	.660 .594	.624 .923	,678 ,788	.705 .722	.539 .959	.733 .696	.511 .984	.706 .763	.596 .948
322	.938	.909	.886	.919	.737	.492	.852	.883	,635	.889	.594	.873	.783	.722	.902	.696	.925	.760	.896
313	.901	.888	.870	.856	.734	.491	.719	.790	.632	.785	.593	.821	.769	.712	.834	.694	.852	.751	.839
799	.845	.853	.844	. 786	.726	.491	.597	.701	.626	.683	. 590	.768	.744	.699	.760	.690	. 769	.735	.777
777	.777	.807	.807	.711	.711	.489	.489	.615	.615	. 585	. 585	.711	.711	.681	.681	.681	.681	.711	.711
747	.699	.751	.761	.633	.689	-485	. 393	. 534	. 599	.492	.575	.652	.670	.656	.600	.666	. 591	.680	.643
710	.617 .923	.687	.706	. 554	.659	.478	. 309	.457	.576	.406	.561	.591	.622	.626	.521	.645	.502	.641	.572
147 144	.909	.870 .863	.835 .830	.952 .897	.659 .659	.396	.993 .848	.964 .866	.554 .553	.981 .880	.501 .501	.882 .832	.729 .725	.642 .639	.935 .878	.606 .606	.970 .911	.694 .692	.917 .865
736	.871	.841	.814	.834	.656	.395	.715	.773	.551	.776	.500	.780	.710	.632	.810	.604	.837	.683	.807
721	.816	.807	. 788	. 764	.648	. 39 5	.593	.684	. 545	.674	.497	.727	.685	.619	.735	.600	.754	.667	.745
599	.747	.761	.751	. 689	.633	.393	.485	. 599	. 534	.575	.492	.670	.652	.600	.656	.591	.666	.643	.680
570	.670	. 705	. 705	.611	.611	. 389	. 389	.518	.518	.482	.482	.611	.611	.576	. 576	.576	.576	.611	.611
633	.588	.641	.650	.532	.581	.382	. 305	.441	.495	. 396	.468	.550	.563	.546	.497	.555	.488	.572	.541
665	.885	.815	.771	.922	.580	.312	.986	.941	.477	.967	.415	.834	.668	.562	.904	.518	.948	.624	.878
662 654	.872 .834	.808 .786	.766 .750	.867 .804	.579 .576	.312	.841 .708	.843 .750	.476 .474	.865 .762	.415 .414	.784 .732	.663 .648	.560 .552	.848 .780	.518 .516	.889 .816	.621 .612	.825 .768
639	.778	.752	.724	.734	.568	.311	.587	.661	.468	.660	.414	.678	.624	.539	.705	.511	.733	.596	.706
617	.710	.706	.687	.659	.554	. 309	.478	.576	.457	.561	.406	.622	.591	.521	.626	.502	.645	.572	.641
588	.633	.650	.641	.581	.532	. 305	. 382	.495	441	.468	. 396	.563	.550	.497	. 546	.488	.555	.541	.572
550	.550	. 586	. 586	. 502	.502	. 298	. 298	.418	.418	. 382	.382	.502	.502	.466	.466	.466	.466	.502	. 502

Table 16. Probability of Early Function

ď		
-		

[a{[1a(1q1)]q3}	.000 .003 .012 .028 .052 .083		.000 .052 .110 .172 .237 .306
Iq{[Iq(Ie1)]#1}	.000 .052 .110 .172 .237 .306		.000 .003 .012 .028 .052
[([+1)d(141)]	.000 .000 .002 .007 .016		.000 .059 .132 .215 .304 .394
1q[(1q1)&(1q1)]	.000 .059 .132 .215 .304 .394		.000 .000 .007 .007 .016
[a[jq(lala1)]	.000 .003 .010 .023 .041 .065		.000 .057 .124 .199 .278
[q[la(lgiql)]	.000 .057 .124 .199 .278 .358		.000 .003 .010 .023 .041
[q[jele(tq1)]	.000 .050 .102 .155 .212 .271		.000 .005 .020 .044 .077
la[lqlq(fal)]	.000 .005 .020 .044 .077 .118		.000 .050 .102 .155 .212 .271
[qlq[ls(lql)]	.000 .102 .205 .308 .406 .499		.000 .000 .004 .009 .009
[ala[Iq([al)]	. 000 . 000 . 000 . 000 . 019		.000 .102 .205 .308 .406 .499
iqiq(isisi)	.000 .098 .191 .280 .365 .446		.000 .000 .003 .009 .036
lais(lqiqi)	. 000 . 000 . 020 . 036 . 036		.000 .098 .191 .280 .365
latala(iqt)	900		.000 .145 .278 .400 .508
lqlqlq(lal)	.000 .145 .278 .400 .508		.000 .000 .000 .000 .007
(1a1)q(1a1)q1	.000 .055 .118 .188 .263		.000 .000 .004 .012 .026
(1q1)a(1q1)a1	.000 .000 .004 .012 .026		.000 .055 .118 .188 .263
(lal)q[la(iql)]	.000 .007 .029 .063 .109		.000 .005 .021 .047 .084
[[s]]e[]d([s])	.000 .005 .021 .047 .084 .130	aŭ.	.000 .007 .029 .063 .109
(lal)q(lalal)	.000 .003 .011 .026 .048	bility of Dudding	.000 .014 .051 .107 .176
(d)*(d d)	.000 .014 .051 .107 .176 .253	ty of 1	.000 .003 .011 .026 .026
(lafalaf)qf	. 000 . 050 . 100 . 150 . 201 . 253	a C	.000 .009 .034 .072 .118
(lqlqlql)sl	.000 .009 .034 .072 .118	Prob	.000 .050 .100 .150 .201 .253
₇ - d d d d	. 000 . 000 . 000 . 007 . 016	Table 17.	.000 .023 .081 .165 .367
f-1q1q1q1q1	. 000 . 000 . 009 . 027 . 058 . 104	Ta	.000 .001 .007 .027 .058
Z-ldldldldl	.000 .023 .081 .165 .263		.000 .000 .000 .007 .016
1-141414141	.000 .226 .410 .556 .672 .763		989.889.89
intaletat	000000000000000000000000000000000000000		.000 .226 .410 .556 .672 .763
र	1		0 .05 .15 .25 .35
•	25.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	10	

Table 18. Average System Proper Function Probabilities

2 0≤e≤.1 0≤e≤.2 2 0≤d≤.2 0≤d≤.1	lsl lpl-1 lsl lpl-1 lsl	. 800 . 889 . 810 . 810 . 889 . 745 . 848 . 901 . 901 . 848 . 719 . 862 . 870 . 862 . 870 . 862 . 870 . 862 . 870 . 862 . 870
0≤e≤.2 0≤d≤.2	1p1-1	.800 .642 .661 .719
0 ≤ e ≤ . 15 0≤ d≤.15	lpl-1 lsl	.850 .850 .783 .916 .806 .893
0≤e≤.1 0≤d≤.1	lpl-l lsl	.899 .899 .854 .946 .869 .930 .930 .869
	TA CO	.5 .67
	:e	11.5

Table 19. Average System Proper Function Probabilities

	0≤ € ≤ .2 0≤ 6 ≤ .1		.827 .958 .910		.792 .871 .962 .906			
	0 S d S . 1		. 904 . 904 . 939 . 845		.614 .927 .934 .827			
	0 S e S . 2 0 S d S . 2		. 656 . 824 . 920 . 832 . 888		.612 .867 .920 .817			
	0≤ € ≤ .15 0≤ d ≤ .15		.733 .865 .952 .879		. 700 . 898 . 952 . 868			•
	0≤ € ≤ .1 0≤ d≤ .1	۴۱	.816 .907 .977 .923		.793 .931 .977 .915			
		$W_E = 0.67 W_D = 1.33$	1s1s1 1p1p1-1 1p1p1-2 (1p1)s1 (1s1)p1	WE=0.5 Wp=1.5				
	0≤ € ≤ .2 0 ≤ d ≤ .1		.860 .742 .948 .919		. 927 . 614 . 934 . 932		.904 .657	.927
in the state of th	0 ≤ e ≤ .1 0 ≤ d ≤ .2		.742 .860 .948 .880		.871 .792 .962 .932		.827	.910
system rioper	3 0≤ e ≤ .2 0≤ d ≤ .2		. 740 . 740 . 920 . 860 . 860	i	. 867 . 612 . 920 . 902		. 824 . 656	.832
lable 19. Average system flower runction ::	n 0 ≤ e ≤ .15		. 799 . 799 . 952 . 901		. 898 . 700 . 952 . 934 . 868		.865	. 923 878
PIGET	0≤ €≤ .1		.862 .977 .938		.931 .793 .977 .961	<i>t</i> s	.907 .816	.953 .923
		W = W D = 1	18181 1p1p1-1 1p1p1-2 (1p1)81	WE=1.5 WD=0.5	1s1s1 1p1p1-1 1p1p1-2 (1p1)s1 (1s1)p1	H_=1.33 W_=0.67	lsisi ipipi-i	1p1p1-2 (1p1)s1 (1s1)p1

0 ≤ e ≤ .2 0 ≤ d ≤ .1 0 ≤ e ≤ .1 0 ≤ d ≤ .2 575 881 974 974 974 927 927 927 939 833 0 ≤ e ≤ .2 0 ≤ d ≤ .2 0 ≤ e ≤ .15 0 ≤ d ≤ .15 .665 .831 .965 .939 .948 .918 .884 .870 .870 .943 622 872 932 932 927 927 927 927 923 923 923 923 $0 \le e \le .1$ $\frac{0 \le e \le .1}{2}$ $\frac{0 \le d \le .1}{2}$. 882 . 983 . 970 . 970 . 970 . 972 . 972 . 972 . 972 . 972 . 972 . 232 . 912 . 987 . 986 . 973 . 973 . 978 . 970 . 965 0≤ e ≤ .2 0 ≤ d ≤ .1 Table 20. Average System Proper Function Probabilities 823 680 969 969 969 912 912 913 873 873 976 976 976 976 976 976 0≤e≤.1 0≤d≤.2 680 927 927 927 927 937 886 896 896 873 873 0 ≤ e ≤ .2 0 ≤ d ≤ .2 0≤ e ≤ .15 0 ≤ d ≤ .15 0 S c S . 1 0 S d S . 1 428. 976. 976. 976. 976. 976. 938. 938. 938. 976. 976. 976. 977. 978. 912 966 987 987 987 989 989 989 983 983 982 983 983 983 983 983 981 986 981 986 981

ō≼ ŏ≚

Tuble 21. Average System Proper Function Probabilities

	0≤•≤.1	0≤ • ≤ .15	0≤•≤.2	0≤•≤.1	0≤∙≤.2	0≤•≤.1	0≤ •≤ .15	0≤•≤.2
	<u>0≤d≤.1</u>	<u>0 ≤ d ≤ .15</u>	<u>0≤d≤.2</u>	<u>0≤6≥.2</u>	<u>0≥0≥.1</u>	<u>0≤0≤.1</u>	0≤ 4≤ .15	<u>0≤ 4≤.2</u>
	Wg-WD-1					Wg=1.5 Wg=	0.5	
lalalalal	.788	.702	.627	.627	. 788	. 894	.851	.813
lpipipipi-i lpipipipi-2	. 788 . 965	.702 .932	.627 .892	.788 .963	.627 .894	.682	.553	.441 .840
lplplplpl-3	.994	.982	.962	.978	.978	.948 .994	. 899 . 982	.962
lplplplpl-4	.965	.932	. 89 2	.894	.963	.982	.965	.944
le(lplplpl)	.935	.896	.853	.885	.903	.953	.919	.880
<pre>lp(lsisis1) (lpip1)s(lp1)</pre>	.935 .974	.896 .947	.853 .913	.903 .961	.885 .926	.918 .965	.873 .930	.826 .887
(lsisl)p(ls1)	.974	.947	.913	.926	.961	.982	.964	.939
[[ls1)pi]s(lp1)	.979	.957	.927	.950	.957	.981	.960	.932
[[lpl)s[]p(lsl) ls(lpl)s(lpl)	.979	.957	.927	.957	.950	.978	.954	.922
lp(ls1)p(ls1)	.941 .941	.906 .906	.867 .867	.874 .934	.934 .874	.969 .913	.949 .863	.925 .809
(lel)plplpl	.859	.794	.733	.858	.734	.788	.691	.600
(lpl)sisisi	. 859	. 794	.733	.734	.858	.929	.897	.866
(lplpl)slsl	.903	.855	.807	.812	. 898	.950	.925	. 897
(lslsl)plpl	.903	.855	.807	.898	.812	. 855	.785	.717
[(ls1)pl]sls1 [(lp1)s1]plp1	. 89 7 . 89 7	.845 .845	. 793 . 793	. 79 5 . 89 5	. 895 . 795	.948 .846	.921 .769	. 894 . 692
[(lsl)plpl]sl	.941	.906	.867	.888	.920	.962	.936	.904
[(lpl)slsl]pl	.941	.906	.867	.920	.888	.920	.876	.830
[(lplpl)sl]pl	.935	.896	.853	.924	.864	.907	.853	. 795
[(lsls1)pl]s1 [(lpl)s(lpl)]pl	.935	.896	.853	.864	.924	.964	.939	.911
[(lsl)p(lsl)]sl	.935 .935	. 896 . 896	.853 .853	.931 .857	.857 .931	.904 .967	.846 .946	.784
{ls[(lsl)pi]} pl	.941	.906	.867	.927	.881	.916	.870	.922 .819
{lp[(lp1)sl]} sl	.941	.906	.867	.881	.927	.966	.942	.915
	W_=-0.67 W_D	-1.33				W _E =0.5 W _D =	1.5	
								
lslelslel	.718	.604	.504	.504	.718	. 682	.553	.441
lpiplplpl-l	.858	.800	.750	.858	-750	. 894	.851	.813
lplplplp1-2 lplplplpl-3	.977 .994	.954	.926	.974	.929	.982	.965	.944
1plplplpl-4	.954	.982 .910	.962 .857	.973 .858	.983 .953	.994 .948	.982 .899	.962
ls(lplpipl)	.924	.881	.835	.857	.902	.918	.873	.840 .826
lp(laisis1)	.947	.911	.871	.904	.913	.953	.919	.880
(lplpl)s(lpl)	.979	.958	.930	.962	.947	.982	.964	.939
(lels1)p(le1) [(le1)pi]s(lp1)	.968 .978	.936 .955	.896 .924	.904 .939	.959 .963	.965	.930	.887
[[lp1]sl]p(ls1)	.980	.959	.930	.950	.961	.978 .981	.954 . 960	.922 .932
1s(1p1)s(1p1)	.923	.878	.829	.833	.918	.913	.863	.809
lp(lal)p(lal)	.960	.934	.905	.950	.915	.969	.949	.925
(lsl)pipipi	.905	.862	.821	.904	.822	.929	.897	. 866
(lpl)sisisi (lplpl)sisi	.812 .871	. 726 . 8 09	.645	.646	.812 .868	. 788	.691	.600
(lelel)pipl	.934	.901	. 748 . 867	.751 .927	.874	. 855 . 950	.785 .925	.717
[(lel)pi]elel	.863	.795	.727	.728	.862	.846	.769	.897 .692
[(lel)pl]elel [(lpl)el]plpl	.931	.895	.85 9	.928	.863	.948	.921	.894
[(101)p1p1]01	.927	.886	.842	.856	.913	.920	.876	.830
[(lpl)slel]pl [(lplpl)sl]pl	.955 .954	.926 .924	.892	.927	.919	.962	.936	.904
[(lelel)pl]el	.93 4 .917	.868	.891 .815	.939 .822	.906 .909	.964 .907	.93 9 .853	.911
[(lp1)s(lp1)]p1	.956	.929	.898	.951	.904	.967	.946	. 795 . 922
[(lal)p(lal)]al	.915	.863	. 808	.810	.912	.904	. 846	.784
{le[(lel)pl]}pl	.957	.930	.899	.939	.917	.966	.942	.915
{1p[[1p1]s1]]}s1	.925	.882	. 836	. 845	.915	.916	.870	.819

tion Probabilities

₹.1	0≤e≤.2	0≤e≤.1	0≤ e≤ .15	<u>0≤e≤.2</u>	0≤ e ≤ .1	0≤ e≤.2	$0 \le e \le .1$	0≤ e ≤ .15	0≤e≤.2	0≤ e≤.1	$0 \le e \le .2$
<u>= .2</u>	<u>0 ≤ d ≤ .1</u>	$0 \le d \le 1$		$0 \le d \le .2$				<u>0≤d≤.15</u>	$0 \le d \le .2$	$0 \le d \le .2$	$0 \le d \le 1$
		W _E =1.5 W _D =0	0.5				W _E =1.33 W _D	=0.67			
											
,	.788	.894	.851	.813 .441	.814 .682	.894 .441	.858	. 800 . 604	. 750 . 504	.750 .718	.858 .504
1	.627 .894	.682 .948	.553 .899	.840	.947	.840	.718 .954	.910	.857	.953	.858
3	.978	.994	.982	.962	.986	.970	.994	.982	.962	.983	.973
í	.963	.982	.965	.944	.947	.980	.977	.954	.926	.929	.974
5	.903	.953	.919	.880	.928	.905	.947	.911	.871	.913	. 904
3	.885	.918	.873	.826	.902	.842	.924	. 881	.835	.902	.857
L	.926	.965	.930	.887	.959	. 893	.968	.936	. 896	.959	.904
5	.961	.982	.964	.939	.958	.963	.979	.958	.930	.947	.962
)	.957	.981	.960	.932	.966 .966	.947	.980	.959 .955	.930 .924	.961 .963	.950 .939
	.950 .934	.978 .969	.954 .949	.922 .925	.936	.933 .959	.978 .960	.934	.905	.915	.950
4	.874	.913	.863	.809	.910	.812	.923	.878	.829	.918	.833
3	.734	.788	.691	.600	.788	.601	.812	.726	.645	.812	. 646
į.	.858	.929	.897	,866	.867	.928	.905	.862	.821	.822	.904
2	.898	.950	.925	.897	.905	.943	.934	.901	.867	.874	.927
3	.812	. 855	.785	.717	.853	. 719	.871	. 809	.748	.868	.751
5	.895	.948	.921	. 894	.897	.944	.931	.895	.859	.863	.928
5	. 795	.846	.769	.692	. 845	. 694	.863	. 795	.727	.862	.728
8	.920	.962	.936	.904	.936	.931	.955	.926	.892	.919	.927
) 4	.888	.920	.876	.830	.909	.840	.927 .917	.886 .868	.842 .815	.913 .909	.856 .822
4	.864 .924	.907 .964	.853 .939	.795 .911	.902 .928	.800 .947	.954	.924	.891	.906	. 939
1	.857	.904	.846	.784	.902	.786	.915	.863	.808	.912	.939 .810
7	.931	.967	.946	.922	.928	.961	.956	.929	.898	.904	.951
7	.881	.916	.870	.922 .819	.909	.826	.925	.882	.836	.915	.845
1	.927	.966	.942	.915	.936	.945	.925 .957	.930	.899	.917	.939
		$\frac{W_{E}=0.5}{M_{D}}$									
4	.718	.682	.553	.441	.441	. 682					
8	.750	.894	.851	.813	. 894	.814					
4	.929	.982	.965	.944	.980	.947					
3	.983	.994	.982	.962	.970	.986					
8	.953	.948	.899	.840	.840	.947					
7	.902	.918	.873	.826	.842	.902					
4 2	.913 .947	.953 .982	.919 .964	.880 .939	.905 .963	.928 .958					
4	.959	.965	.930	.887	.893	.959					
9	.963	.978	.954	.922	.933	.966					
ó	.961	.981	.960	.932	.947	.966					
3	.918	.913	.863	. 809	.812	.910					
0	.915	.969	.949	.925	.959	.936					
4	.822	.929	. 89 7	.866	.928	.867					
6	.812	. 788	.691	.600	.601	. 788					
1	.868	.855	.785	.717	.719	.853					
7	.874	.950	.925	.897	.943	.905					
.8 8	.862 .863	.846 .948	.769	.692	.694 .944	.845 .897					
6	.913	.920	.921 .876	. 894 . 830	.840	.909					
:7	.919	.962	.936	.904	.931	.936					
9	.906	.964	.939	.911	.947	.928					
:2	.909	.907	.853	. 795	.800	.902					
1	.904	.967	.946	.922	.961	.928					
.0	.912	.904	.846	. 784	. 786	.902					
19	.917	.966	.942	.915	.945	.936					
5،5	.915	.916	.870	.819	. 826	.909					

Table 22. Average System Proper Function Probabilities

6≤ € ≤ .2 0≤ d ≤ .1		.862 .958 .958 .950 .965	.901 .848 .962 .963 .963	
0		.862 .870 .939 .974 .904	. 848 . 901 . 901 . 976 . 970	
0≤ e≤.2 0≤ d≤.2		. 661 . 719 . 920 . 941 . 899	. 642 . 745 . 920 . 951 . 989	
0≤ € ≤ .15 0≤ d ≤ .15		.806 .893 .952 .965 .939	.783 .916 .952 .972 .932	
05 e ≤ .1 0 ≤ d ≤ .1	<u>ਲ</u>	. 930 . 930 . 977 . 983 . 994	. 854 . 946 . 977 . 987 . 966 . 994	
	WE=0.67 WD=1.33	1s1 1p1-1 1p1p1-2 1p1p1p1-2 1p1p1p1-3 1p1p1p1-3	W _E =0.5 W _p =1.5 181 181 19191-2 1919191-2 1919191-3	
0 S e S . 2 0 S d S . 1		.889 .810 .948 .927 .969	. 848 . 901 . 934 . 892 . 976	. 862 . 870 . 939 . 904 . 974
0≤ € ≤ .1 0 ≤ d ≤ .2		.810 .889 .948 .969 .927 .978	. 901 . 848 . 962 . 963 . 986	.870 .862 .958 .965 .950
0 S d S . 2		.800 .900 .920 .920	. 745 . 642 . 920 . 889 . 951	. 719 . 661 . 920 . 989 . 941
0≤e≤.15 0≤d≤.15		.850 .952 .952 .952	.916 .783 .932 .932	. 893 . 806 . 952 . 939 . 982
0 ≤ e ≤ .1 0 ≤ d ≤ .1		.899 .899 .977 .976	946 854 977 966 987	. 930 . 869 . 977 . 970 . 983
	$W_{\rm E}^{-44}D^{-1}$	161 1p1-1 1p1p1-2 1p1p1p1-2 1p1p1p1-3 1p1p1p1-3	W _E =1.5 W _D =0.5 181 191-1 1919-1 1919191-2 1919191-3	W_E=1.33 W_D=0.67 W_D=0.67

Table 23. Average System Probability of Proper Function (Average Based on Increments of .05 in Probability)

For n Identical Parallel Channels of Which at Least k Must Function in Order For The System to Function

	Habe talletton	in order for i	ne bystem to t	dict ton	
	$0 \le e \le 1$	$0 \le e \le .15$	$0 \le e \le .2$	$0 \le e \le .1$	$0 \le e \le .2$
<u>(k,n)</u>	$\underline{0 \leq d \leq .1}$	$\underline{0 \leq d \leq .15}$	$\underline{0 \leq d \leq .2}$	$0 \leq d \leq .2$	<u>0 ≤ d ≤ .1</u>
$\frac{W_{E}=W_{D}=1}{}$					
(3,5)	.994	.982	.962	.978	.978
(3,6)	.994	.982	.962	.989	.967
(4,6)	,994	.982	.962	.967	.989
(4,7)	.998	.992	.981	.989	.989
(4,8)	.998	.992	.981	.995	.983
(5,8)	.998	.992	.981	.983	.995
(5,9)	.999	.997	.990	.994	.994
W _E =1.5	$W_D=0.5$				
(3,5)	.994	.982	.962	.986	.970
(3,6)	.991	.975	.948	.989	.950
(4,6)	.996	.989	.976	.983	.990
(4,7)	.998	.992	.981	.994	.985
(4,8)	.997	.990	.974	.996	.975
(5,8)	.999	.995	.988	.991	.995
(5,9)	.999	.997	.990	.997	.992
$W_E=1.33$	$W_{D}=0.67$				
(3,5)	.994	.982	.962	.983	.973
(3,6)	.992	.977	.953	.989	.956
(4,6)	.995	.987	.972	.977	.990
(4,7)	.998	.992	.981	.992	.986
(4,8)	.998	.991	.976	.996	.978
(5,8)	.999	.994	.985	.989	.995
(5,9)	.999	.997	.990	.996	.993
$W_{E}=0.67$	W _D =1.33				
(3,5)	.994	.982	.962	.973	.983
(3,6)	.995	.987	.972	.990	.977
(4,6)	.992	.977	.953	.956	.989
(4,7)	.998	.992	.981	.986	.992
(4,8)	.999	.994	.985	.995	.989
(5,8)	.998	.991	.976	.978	.996
(5,9)	.999	.997	.990	.993	.996
$W_{E}=0.5$	W _D =1.5				
(3,5)	.994	.982	.962	.970	.986
(3,6)	.996	.989	.976	.990	.983
(4,6)	.991	.975	.948	.950	.989
(4,7)	.998	,992	.981	.985	.994
(4,8)	.999	.995	.988	.995	.991
(5,8)	.997	.990	.974	.975	.996
(5,9)	.999	.997	.990	.992	.997

AVERAGE SYSTEM PROPER FUNCTION PROBABILITIES

	AVERAUS 515	124 PAPER PORCION

AVERAGE SYSTEM PROPER FUNCTION PROBABILITIES

AVERAGE SYSTEM PROPER FUNCTION PROBABILITIES

	MANAGE PROTEST STOCKE LANGESTER STOCKE STOCK
: 45 6 2 5 6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 6	
2007 NB	
re.	

REFERENCES

- (1) Kohler, H. W., "Numerical Data on the Probability of Proper Function of Multiple Fuzing Systems", DOFL Report TR-34, January 27, 1954.
- (2) Breiter, M. C., "Multiple Fuzing to Increase Proper Function", NBS Report 13/4-95R, November 27, 1950.
- (3) Page, C. H. and Karr, P. R., "Multiple Fuzing", NBS Report 13/0-EP-5R, July 28, 1950.
- (4) Domsitz, M. G., "An Analysis of Simple Multiple Fuzing Systems," NBS Report 13-0-76M, October 7, 1952.
- (5) Dupuy, C. J. and Williamson, E. A., "Multichannel Fuze Systems Feasibility Study", NAVWEPS Report 7179, NOLC, May 1961.
- (6) Rau, J. G., "Trichotomous Systems and Their Reliability," NAVWEPS Report 7234, NOLC, probable publishing date, April 1963.
- (7) Rau, J. G., "Reliability Determination for General Trichotomous Systems", NOLC Tech Memo 52-68, November 1962.

DISTRIBUTION LIST

		<u>Co</u>	pies
Chief, Bureau of Naval Weapons		Commanding Officer	
Navy Department		Picatinny Arsenal	
Washington 25, D. C.		Dover, New Jersey	
Attn: RM	2	Attn: FREL	1
RMGA	1		
RMMO	3	Ministry of Aviation, G.W.(G&C)
RRRE	1	Castlewood House	
		77/91, New Oxford Street	
Chief of Naval Operations		London, W. C. I.	
Navy Department		Attn: Mr. P.A. Jewell, T	.W.P. D-4
Washington 25, D. C.		Via BUWEPS Code RMMO-2	1
Attn: Code Op03EG	1		
•		Armed Services Technical In	formation
Commanding Officer		Agency	
Naval Air Development Center		Arlington Hall Station	
Johnsville, Pa.	1	Arlington 12, Va.	
		Attn: TIPCA	10
Commander			
Naval Missile Center		Applied Physics Laboratory	
Point Mugu, California	1	The Johns Hopkins Universit	У
		8621 Georgia Avenue	
Commander		Silver Spring, Md.	1
Naval Ordnance Test Station			
China Lake, California		American Optical Company	
Attn: Technical Library	1	Research Department	
		14 Mechanic Street	_
Commander		Southbridge, Mass.	1
Naval Weapons Laboratory			
Dahlgren, Virginia	1	Armour Research Foundation	
		Illinois Inst. of Technology	_
Commanding Officer		Chicago 16, Ill.	1
Diamond Ordnance Fuze Laboratory	_		
Washington 25, D. C.	1	Bendix Corporation	
		Bendix Systems Division	_
Commander		Ann Arbor, Mich.	1
Naval Ordnance Laboratory			
White Oak	_	Emertron, Incorporated	
Silver Spring, Maryland	1	1140 East West Highway	_
		Silver Spring, Md.	1
ITT Federal Laboratories			
Div. of Inter Telephone and		INSMAT, Buffalo	
Telegraph Corporation	_	Engineering Staff	
Fort Wayne, Indiana	1	121 Lincoln Ave.	•
		Rochester 11, N. Y.	1
Melpar, Inc.		P1-11 0	
3000 Arlington Boulevard	•	Philco Corporation	
Falls Church, Virginia	1	4700 Wissahickon Avenue	1
		Philadelphia 44, Pa.	1

Raytheon Company	
Missile Systems Division	
Bedford, Mass.	1
·	
Aerospace Corporation	
San Bernardino Operations	
San Bernardino, California	
Attn: A. D. Morse	
Bldg. 537, Rm. 922	1
•	
NOLC Washington Office	
Naval Ordnance Laboratory	
White Oak, Md.	1
NOT C	
NOLC	
B. F. Husten, Code 50	1
R. A. Boot, Code 50	1
L. L. Parker, Code 50	1
H. A. Bulgerin, Code 51	1
V. A. Brown, Code 52	1
R. L. Bauer, Code 53	1
J. J. Nastronero, Code 54	1
C. R. Hamilton, Code 55	1
H. B. Bryant, Code 56	1
J. J. Pierce, Code 65	1
F. C. Alpers, Code 71	1
W. F. Meggers, Code 72	1
R. V. Talbot, Code 74	1
Technical Library, Code 234	2
Code 522	2